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Abstract. Exact quantum electrodynamical results are obtained for a semiconductor quantum dot
placed inside a microcavity of arbitrary photon leakage(κ), and radiative(γ ) and nonradiative(γc)

decay rates. Analytical results are obtained for the density matrix elements. The absorption spectra
thus obtained for arbitrary values ofκ, γ andγc exhibit the solid-state analogue of the vacuum
Rabi splitting when the system decay parameters are much smaller than the quantum dot–cavity-
field coupling parameter. Numerical estimates are made for samples of CdS and GaAs quantum
dots of dimensions 19 Å and 56 Å, respectively. The results are in qualitative agreement with the
experimental observations.

1. Introduction

Modern photolithographic and etching techniques have made it possible to realize microcavities
in condensed matter systems [1]. At low excitation energy, a semiconductor microresonator
will be occupied by less than one photon, leading to spontaneous emission due to electronic
transitions from conduction to valence band states. This situation can be compared with
that of an atom placed in a microcavity where the cavity size is comparable to the photon
wavelength [2, 3]. There has been growing interest in recent years in the study of the solid-
state analogue of the quantum effect of vacuum Rabi splitting [4–6]. Observation of the
Rabi splitting in solids requires an equivalence of atomic and photon oscillators in monolithic
semiconductor structures. It is well known that the oscillator strength of the electron–hole
continuum in the volume of the exciton is concentrated at the excitonic energy, making it
equivalent to a two-level atomic system [7].

In the case of quantum confined structures such as zero-dimensional quantum dots (QDs),
the discrete energy spectrum of the QD exhibits a closer analogy with that of the atom. Time-
resolved photoluminescence spectroscopy of CdS and GaAs quantum dots reveals distinct
narrow lines [8]. For experimental purposes, the quantum dots are generally etched from two-
dimensional quantum well structures. The Fabry–Pérot cavity grown by the metal–organic
chemical vapour deposition (MOCVD) technique yields cavity mirrors with reflectivities of
about 98%, which may be treated as the strong-coupling limit (SCL) for the QD and the electro-
magnetic radiation [4,9]. For semiconductors, very fine microcavities can be realized by using
distributed Bragg reflectors with embedded quantum wells. Lyngneset al [10] used a 3λ/2
GaAs spacer between a 14-period top and 16.5-period bottom GaAs/GaAlAs Bragg mirror
having reflectivity≈99.6%. For uncoated resonator faces of GaAs samples, the calculated
reflectivities are≈30%, since the refractive index of the semiconductor is about 3.5 times larger
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than the value unity outside [11]. Such cavities give rise to the so-called weak coupling of the
QD with the cavity electromagnetic field. For such weak-coupling limits (WCL), irreversible
decay of the population occurs, while for the SCL, the alternating absorption and emission of
the cavity field leads to Rabi oscillations in the transmitted intensity and Rabi splitting in the
frequency spectrum [8].

In the quantum mechanical description of a QD, one is required to take into account the role
of (i) one- and two-electron–hole-pair (EHP) states, (ii) the Coulombic interaction energy and
the (iii) confinement energy [12,13]. At low excitation intensities and moderate temperatures,
the exciton density is small and hence the contribution of 2-EHP states is negligible [14].
It has been shown that for a small QD of radiusR smaller than the bulk excitonic Bohr
radius (R 6 aB), the confinement-induced energy shift is much larger than the Coulomb
interaction energy, and one can safely ignore the Coulomb interaction without losing much
accuracy [15]. However, the above-mentioned approximations are valid as long as one is not
particularly concerned with calculating the exact wavefunctions and energy eigenfunctions of
the system [16]. The optical properties of a small QD are highly sensitive to the sizes of the
distributions of the QDs in an array. The variation of the QD size distribution can be accounted
for by introducing a probability size distribution function. A spherical shape for the QD and
the Gaussian distribution function for its radii have been proposed by Wuet al [17] while
studying the average absorption of a QD in a quantum dot ensemble.

Of late, there has been growing interest in examining the role of so-called Coulomb
blockade in semiconductor quantum dots at very low temperatures [18–23]. It is evident that
tunnelling due to Coulomb blockade in semiconductor quantum dots such as GaAs/GaAlAs
QDs can be significant only for electrostatic energy

1E ≈ e2/C � kBT

with C being the capacitance of the quantum dot [19]. It can easily be established by calculation
that the photon-assisted tunnelling in the presence of Coulomb blockade is meaningful only in
the recently developed area of microwave spectroscopy with very low excitation intensity [20].
In the present analysis we have considered photon excitation energy ¯hω ≈ h̄ωg (=1.514 eV,
h̄ωg being the band-gap energy), which is about 104 times larger than the Coulomb energy
(1E ≈ 0.16 meV), as obtainable in a QD of GaAs [19]. The situation will be more or less
unchanged for CdS. Accordingly, we have neglected the role of Coulomb blockade in the
study of optical properties in semiconductor quantum dots subjected to optical radiation in the
near-visible spectrum.

In the present paper, we have theoretically analysed the emission and absorption spectrum
of a small quantum dot (R 6 aB) placed in a microcavity, taking into account the role of single-
EHP states below the semiconductor band edge. It is expected that the transition probability
will be maximum for the resonant transitions, while it will decrease sharply with increasing
departure from resonance. We have chosen a pump energy near the resonance for the lowest
excitonic state. Taking into account the maximum frequency spread of a subpicosecond pulse
(1014 s−1), the quantum numbers for single-EHP states are restricted ton = 1, 2 andl = 0,
1. Accordingly, the direct allowed photo-induced electronic transitions to the excitonic states
with n = 1, 2 andl = 0, 1 have been considered in the present model. We have incorporated
the various decay parameters arising due to the cavity photon leakage (κ), and radiative (γ )
and nonradiative (γc) decay rates. In order to analyse the optical properties of a QD in an array,
we have used the Gaussian size distribution function. The present analysis has been applied to
the specific cases of GaAs and CdS quantum dots of dimensions 56 Å and 19 Å, respectively,
placed inside a microcavity of arbitraryQ-factor.
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2. The model

We consider the interaction of quantized radiation with the quantum dot placed in a microcavity
of arbitraryQ. The cavity supports a single mode of frequencyω and photons leak out at a
rate of 2κ. The present formulations are constructed for a small quantum dot of sizeR 6 aB ,
smaller than the bulk excitonic Bohr radius. Such smallness of the QD allows one to ignore the
electron–hole (e–h) Coulombic energy in comparison to the exciton confinement energy [13].
This approximation is valid as long as one is not concerned with direct calculations of the
energy difference or details of the electron–hole wavefunctions. We have also neglected the
biexciton contribution, assuming the excitation intensity to be low enough to produce a large
electron–hole pair density.

The total Hamiltonian for radiation–QD interaction can be defined as [13]

H =
∑

e

ωeπee + ωa†a +
∑

e

ge(a
†π0e + h.c.). (1)

Here,ω is the pump frequency and ¯hωe (=h̄ωg − ER(αeaB/R)2) is the energy of theeth
exciton,ER being the exciton Rydberg energy.e = {n, l}, with n, l the quantum numbers
corresponding to the 1s, 1p, 1d,. . . , 2s, 2p, . . . levels of theelectrons and holes. The par-
ameterge(=(µeE)/h̄) couples theeth exciton of the QD with the single mode of the cavity
electromagnetic field,µe being the exciton transition dipole moment for theeth energy state.
a† and a are the creation and annihilation operators of the cavity field andπij = |i〉〈j |.
Consequently, the density matrix equation of motion can be written as

∂ρ

∂t
= −i[H, ρ] + κLcρ + γLrρ + γcLnrρ ≡ Lρ (2)

where

Lcρ = 2aρa† − a†aρ − ρa†a (3)

Lrρ = 2π0eρπ
†
0e − π

†
0eπ0eρ − ρπ

†
0eπ0e (4)

Lnrρ = 2πeeρπee − π2
eeρ − ρπ2

ee. (5)

Such an approach for incorporating the damping rates has been widely used by many authors in
studying the interaction of a semiconductor with the single mode of the cavity field [9,24,25].

In obtaining (1)–(5) we assume that the cavity field hasn+1 photons and the semiconductor
contains no excitons, which is represented by|n + 1, 0〉. With the loss of a photon, the QD
acquires an exciton in anyeth state represented by|n, e〉. The different excitonic states (|0〉
and |e〉) and the number of photonsn in the cavity mode suggest 2n + 1 as the number of
possible states. Hence, one has to deal with(2n + 1)2 × (2n + 1)2 matrices to solve the density
matrix equation (2). The trivial mathematics may be avoided by considering the initial state
of the system as|∅, e〉, which will return to either the|1, 0〉 rate or the|∅, 0〉 state by radiative
or nonradiative decay processes. In the forthcoming discussions, we have denoted the ‘zeros’
of the photon and exciton states by|∅〉 and|0〉, respectively. The density matrix equation for
the state|∅, e〉 is found to be[

d

dt
− i

(
ω + 1e + i0 ge

ge ω + iκ

)] ( 〈∅, 0|ρ∣∣∅, e〉
〈∅, 0|ρ∣∣1, 0〉

)
= 0 (6)

where1e = ωe − ω and0 = γ + γc. The density matrix equations of motion are obtained as d

dt
+


20 ige −ige 0
ige −(i1e − κ − 0) 0 −ige

−ige 0 i1e + κ + 0 ige

0 −ige ige 2κ





〈∅, e|ρ∣∣∅, e〉
〈1, 0|ρ∣∣∅, e〉
〈∅, e|ρ∣∣1, 0〉
〈1, 0|ρ∣∣1, 0〉

 = 0. (7)
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The totalρ0e can be calculated by summing over all of the electron–hole pair states existing
from |0〉 to |e〉. Equations (6) can be used to study the emission and absorption characteristics
while equation (7) yields the probability distribution. We first confine our attention to studying
the probability distribution. Accordingly, using the Laplace transform technique [26], we get

〈∅, 0|ρ∣∣∅, e〉 = 1

r+
e − r−

e

[[
(r+

e − iω + κ)〈∅, 0|ρ(0)
∣∣∅, e〉 + ige〈∅, 0|ρ(0)

∣∣1, 0〉] er+
e t

− [
(r−

e − iω + κ)〈∅, 0|ρ(0)
∣∣∅, e〉 + ige〈∅, 0|ρ(0)

∣∣1, 0〉] er−
e t

]
(8)

and

〈∅, 0|ρ∣∣1, 0〉 = 1

r+
e − r−

e

[[
[r+

e − i(ω + 1e) + 0]〈∅, 0|ρ(0)
∣∣1, 0〉 + ige〈∅, 0|ρ(0)

∣∣∅, e〉] er+
e t

− [
[r−

e − i(ω + 1e) + κ]〈∅, 0|ρ(0)
∣∣1, 0〉 + ige〈∅, 0|ρ(0)

∣∣∅, e〉] er−
e t

]
(9)

with

r±
e = i

(
ω +

1e

2

)
− κ + 0

2
± 1

2
[(i1e + κ − 0)2 − 4g2

e ]1/2. (10)

Similarly, the solutions for the Laplace-transformed variables are found from
ϕ̂1(r)

ϕ̂2(r)

ϕ̂3(r)

ϕ̂4(r)

 = M

A(r)


ϕ̂1(0)

ϕ̂2(0)

ϕ̂3(0)

ϕ̂4(0)

 (11)

where

M =


4g2r1 + r0[r2

1 − (κ − 0)2] i1er
2
2 2ge1e(κ − 0) 2ge1er1

i1er
2
2 r0r

2
2 −2iger0(κ − 0) −2iger0r1

2ge1e(κ − 0) −2iger0(κ − 0) r1r
2
3 + 4r0g

2
e r2

3(κ − 0)

2ge1e0 −2iger0r1 r2
3(κ − 0) r1r

2
3


with r0 = r + κ + 0; r1 = r + κ + γ ; r2

2 = r2
1 − (κ − 0)2; r2

3 = r2
0 + 12

e and also
ϕ̂(r)1/2 = 〈1, 0|ρ̂∣∣0, e〉 ± 〈∅, e|ρ̂∣∣1, 0〉 andϕ̂(r)3/4 = 〈∅, e|ρ̂∣∣∅, e〉 ± 〈1, 0|ρ̂∣∣1, 0〉. The carets
in (11) indicate the Laplace-transformed variables. The polynomialA(r) is given by

A(r) = (r2
0 + 12

e)[r
2
1 − (κ − 0)2] + 4g2

e r0r1. (12)

Usage of (11) and (12) yields〈1, 0|ρ̂∣∣∅, e〉 as

〈1, 0|ρ̂∣∣∅, e〉 = − ige

A(r)
(r0 + i1e)(r0 + κ − 0). (13)

In our forthcoming discussions, we have represented〈1, 0|ρ∣∣∅, e〉 asρ0e. Also, ρ0e has been
calculated for the damping parameters corresponding to the weak- and strong-coupling regimes
of the small quantum dot. The present theoretical model is an extension of the work reported by
Agarwal [25] developed to study electromagnetic results for scattering, emission and absorption
from a Rydberg atom in a microcavity of arbitraryQ. Equations (11)–(13) can be reduced
to those of Agarwal [25] if one neglects the excitonic effect and putsγ = γc = 0 in the
present formulations. The coupling parameterge and the exciton–cavity detuning parameter
1e defined in the current analysis take into account the different excitonic states existing in
the case of the quantum dots in the semiconductor.

The confinement effects in the QD cause a shift of the absorption lines to the higher-
energy side. In an inhomogeneous distribution of QDs (IQD) the absorption line broadens
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due to the presence of many QDs of varying sizes in the surroundings. For typical quantum
dot samples grown in semiconductor-doped glasses or colloids, it is known that the dot sizes
vary by 15–20% from the average dot size. These variations in the QD size introduce an
inhomogeneous broadening of the absorption lines. Accordingly, we have accounted for the
inhomogeneous broadening arising due to the variations in the radii of the quantum dots. The
average QD absorption coefficient is calculated by assuming a Gaussian probability distribution
function similar to the one chosen by Wuet al [17].

The theoretical model as developed in this section can be successfully employed to study
and compare the emission and absorption spectra of (i) an atom in a lossy cavity, (ii) a single
quantum dot (SQD) in a lossy cavity and (iii) a single quantum dot in an IQD. We have obtained
results for strong-coupling (ge � γc, κ) and weak-coupling (ge � γc, κ) regimes.

3. Results and discussion

Optical confinement in a QD may be achieved by cleaving the substrate along the crystal
planes. In GaAs, QDs have been formed naturally by interface steps in narrow quantum wells
(QWs) [27]. Under certain circumstances, owing to the high gain in the active region, resonator
facets are uncoated and yield a reflectivity of about 30% [11]. However, Weisbuchet al [4]
as well as Lyngneset al [10] have used microcavities having 98% and 99.5% reflectivity,
respectively. In the former case, the coupling of the QD with the cavity field is weak as
compared to the losses incurred in the cavity (g � κ+0) and is referred to as the weak-coupling
limit (WCL). The other [4,10] regime corresponds to the strong-coupling limit (SCL), where
the coupling is strong as compared to the losses (g � κ + 0).

A numerical analysis has been carried out for a system of small QDs of (i) CdS, of
dimensions 19 Å [28], and (ii) GaAs/GaAlAs, of dimensions 56 Å [12]. The other material
parameters for CdS and GaAs are given in table 1. The QDs are assumed to be irradiated by
resonant lasers. The results for both strong- and weak-coupling limits are presented below.

Table 1. Material parameters of GaAs and CdS quantum dots.

SCL WCL

R aB ωg ER κ γ g κ γ g

Sample (nm) (nm) (eV) (meV) (×ωg) (×ωg) (×ωg) (×ωg) (×ωg) (×ωg)

CdS 1.9a 2.9b 2.56a 28c 0.02d 0.001e 0.19f 0.7g 0.01e 0.19f

GaAs 5.6h 10.9i 1.514i 5.43c 0.02d 0.001e 0.29f 0.7g 0.01e 0.29f

a Reference [28].
b Reference [13].
c Calculated from the definitionER = h̄2/(2mra

2
B).

d Reference [4].
e Incorporated phenomenologically.
f Calculated from the expressionge = µeE/h̄ for e = 1.
g Reference [11].
h Reference [12].
i Reference [34].

3.1. The strong-coupling limit

In this limit, the photon leakageκ is related to the transmittivity (T ) of the cavity asκ = ωT .
Also considering(κ − 0)2 � g2

e and taking the inverse transform of (13), we get the real part
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of ρ0e as

ρ0e =
∑

e

ge1e

α2

[
sin2(αet/2) +

(
sinαet

αet
− 1

)
(κ − 0)t

]
exp[−(κ + 0)t ] (14)

with αe = [12
e + 4g2

e ]1/2. ρ0e obtained for strong QD–cavity coupling shows a superposition
of three distinct forms. The first two of these oscillate at a frequencyαe, while the third gives
a DC shift toρ0e. A careful examination of (14) clearly reveals that for small observation
times (t � π/αe), the sine function contributes moderately to the DC factor, while for large
observation times (t > π/αe), the DC factor dominates. However, the exponential decay
of ρ0e over time indicates thatρ0e can be considered to be finite for timest 6 (κ + 0)−1.
Thus the resultantρ0e is expected to exhibit an oscillatory exponential decay at the rateκ + 0

and an oscillation frequencyαe. The values of1e andge govern the magnitude ofρ0e. The
decay time can be enhanced by decreasing the values ofκ + 0. The expected nature ofρ0e,
as discussed, can be confirmed from a sample calculation. The various terms in equation (14)
are plotted in figure 1 for a single value ofe (=1). Curve a is obtained from the first term
of (14) while curve b is obtained from the second term. Curve c representsρ0e as calculated
from the complete expression forρ0e as defined in (14). Curve a clearly indicates a sine-
squared variation superposed on an exponentially decaying function while curve b shows a
superposition of a sine function and an exponentially decaying function. For small times, the
sine-squared function makes a large contribution, while for large times the second term has a
dominant role as is evident from curve c.

0.00 0.01 0.02 0.03 0.04 0.05

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 a
 b
 c

ρ oe
 

t (ps)

Figure 1. Sample calculations ofρ0e (equation (14)) versus time. Curve a represents the first term
in the square brackets in (14) while curve b is obtained from the second term of the same equation.
Curve c was calculated from the complete expression.

In order to compare the nature of the emission spectra obtained for a quantum dot with that
of the spectra of an atomic system in the microcavity, we have analysed the behaviour ofρ0e
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as a function of time by taking into account (i) only the 1s excitonic state and (ii) the transition
from the ground state|0〉 to all of the |e〉 states. In the former case, the situation becomes
similar to a simple two-level system exhibited by an atom. In the forthcoming discussions,
case (i) has been denoted by the term ‘representative atom’.

Figures 2(a) and 2(b) illustrate the time variation ofρ0e obtained for realistic values of
CdS and GaAs quantum dots of radius 19 Å and 56 Å, respectively. The two curves in each
part are obtained for the representative atom and for a quantum dot. The oscillatorily decaying
nature ofρ0e is evident from both of the curves. The magnitude ofρ0e is increased for the
quantum dots as compared to that for the representative atom. This can be attributed to the fact
that in the present model the QD has been represented as a combination of different excitonic
levels|e〉. Thus contributions from each excitonic level add up to yield a larger value. These
contributions are shown individually in the inset of the figure. Lyngneset al [10] have studied
the response of a semiconductor microcavity to a single intense femtosecond laser pulse. Their
measurements of the upconversion intensity in an InGaAs QW placed within a Bragg mirror
of reflectivity 99.6% exhibit similar behaviour. Although the experiment of Lyngneset al [10]
was performed on two QWs, in our opinion such experiments could be extended to a QD
sample grown naturally from interface steps in narrow QWs [27].

0.00 0.01 0.02 0.03 0.04 0.05

0.000

0.005

0.010

0.015

0.020 B GaAs
 Atom
 SQDρ oe

t (ps)

0.00 0.01 0.02 0.03 0.04 0.05

0.000

0.005

0.010

0.015

e=3

e=2

e=1

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.0000

0.0005

0.0010
A

CdS
 Atom
 SQD

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

e=3

e=2

e=1

Figure 2. The temporal variation ofρ0e in the strong-coupling limit, for CdS and GaAs quantum
dots.

In a QD–microcavity experiment, it is difficult to isolate a single quantum dot of such
small dimensions. Hence it is common practice to use an inhomogeneous distribution of QDs
in the microcavity experiments. In an IQD the variation in size of the quantum dot causes
a distribution of the energies. The inhomogeneous broadening may be taken into account
by assuming that the particles have a Gaussian size distributionF(R) around a mean value
1R = xR0, with x being the percentage variation in the Gaussian width [17,29]. Hence, the
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average value ofρ0e for a single QD in an array of many QDs may be defined, in a manner
comparable to the approach of Wuet al [17], as

ρ0e

∣∣
av

=
∫ aB

0
F(R)ρ0e

∣∣
R

dR (15)

where

F(R) = (1R)−1
√

ln 2/π exp
[− ln 2 [(R − R0)/1R]2] .

The present formulations have been developed for a small quantum dot of dimensionR 6 aB ;
hence the limit of integration is selected for all possible sizes in the rangeR = 0 toaB .

In figures 3(a) and 3(b), the temporal nature of the strong-coupling limit has been plotted
for small QDs of CdS and GaAs, respectively, for different widths of the Gaussian size
distributions. The solid curves were obtained for a single quantum dot taking into account the
four excitonic states. The dashed curves were obtained for the average value ofρ0e as given by
ρ0e|av with a Gaussian size distribution, having widthx = 20%. It is evident from the curves
that the incorporation of a dot size distribution function broadens the curves. Also, for such
distribution widths the small peaks collapse to a single broadened peak.

0.00 0.01 0.02 0.03 0.04 0.05

0.00

0.01

0.02

0.03

0.04 B
GaAs

 Atom
 IQD 20%

ρ oe

t (ps)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.0000

0.0005

0.0010

0.0015

0.0020
A CdS

 SQD
 IQD 20%

Figure 3. The time dependence ofρ0e in the strong-coupling limit, for CdS and GaAs quantum
dots.

3.2. The weak-coupling limit

In a low-Q cavity experiment, the relaxation mechanisms dominate over the coupling
mechanism. Thus, to account for such realistic situations, we obtainρ0e for (κ + 0)2 � g2

e .
Taking the inverse transform of (13) we find

ρ0e =
∑

e

ge

1e + i(κ + 0)

[
exp(−20t) − exp[(i1e − κ − 0)t ]

]
. (16)
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Equation (16) comprises an exponentially decaying (at the rate 20) term superposed upon
an oscillatory decay (at the rateκ + 0) term. Forκ > 0, the oscillatory term will decay
faster and one may not obtain the oscillations in the transmitted signal. On the other hand,
for κ � 0, an oscillatorily decaying output is expected. For the numerical estimates obtained
for QDs of CdS and GaAs in the WCL, we have takenκ = 0.7 and0 = 0.01. The other
material parameters are chosen to be same as those used to obtain figures 2 and 3. As we
have takenκ � 0, the oscillatory term is found to decay faster in comparison with the first
term in (16). This analytical feature can be verified from figure 4, where we have plotted
the variation ofρ0e as a function of time. The analytical results have been plotted for a
representative atom (solid), for a SQD (dashed) and for an IQD (dotted). The amplitude of
the oscillations inρ0e is found to be minimum in the case of an atom; it is reduced for a SQD
and an IQD. A comparison ofρ0e in the strong- and weak-coupling limits can also be made
from figures 2 to 4. It can be seen thatρ0e decays faster for the WCL as compared with the
SCL.

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.05

0.10

0.15
B

GaAs
 Atom
 SQD
 IQD

ρ oe

t (ps)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0000

0.0025

0.0050

0.0075
A

CdS
 Atom
 SQD
 IQD

Figure 4. The variation ofρ0e with time t in the weak-coupling limit, for CdS and GaAs quantum
dots.

The experimental realization of the strong-coupling regime mentioned here is achieved in
high-Q cavities described by large Bragg mirror reflectivities (≈95%) where the dot–photon
coupling can be assumed to be strong. On the other hand, the weak-coupling regime mentioned
here resembles more the practical situations where the cavity concept for the QD is not
used and one observes the free-space response of a QD at high excitation densities, as in
photoluminescence (PL) and absorption spectra studies of the QDs. In connection with this
we can phenomenologically compare the results exhibited in figure 4 with the ones obtained
by Heitzet al (their figure 8) [30] while studying the excited-state energy relaxation in stacked
InAs/GaAs quantum dots.
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4. The absorption spectrum

In order to observe the absorption spectrum, we adopt the standard technique for a medium
saturated by an intense driving field. We assume that the system is weakly perturbed by a
monochromatic probe field at a frequencyν such that the absorption characteristics can be
monitored. The density matrix equation (1) will be modified in the presence of a weak probe
field of the form

∂ρ

∂t
= Lρ − i

∑
e

[Geπ
+
e0 exp(−iνt) + h.c., ρ]. (17)

Here,Ge couples the weak probe field with the system under observation. The exact solution
of ρ can be obtained by expanding it in a series as

ρ = ρ(0) + ρ(1) + ρ(2) + · · · (18)

with

Lρ(0) = 0. (19)

The first-order density matrix now yields

ρ(1)(t) = −i
∫ t

0
exp[L(t − τ)]

∑
e

[Geπ
+
e0 exp(−iνt) + h.c., ρ(0)(τ )] dτ. (20)

The vacuum field of the pump modifies the probability of occupation of the quantum states.
This in turn affects the absorption of the probe field. The time-average rate of absorption (W )
of an atom in a cavity can be obtained by defining

W =
∑

e

d

dt
〈P 〉E′ = −iν

∑
e

(µe0E
′)〈π+

e0〉 exp(−iνt) + c.c. (21)

whereE′ andµe0 are the electric field amplitude of the probe field and the transition dipole
moment, respectively. Following the procedure adopted by Agarwal and Puri [25], the time-
average rate of absorption is found to be

W = 2ν
∑

e

[[ |µe0E
′|

h̄

]2

Re

[
1

r+
e − r−

e

[ r+
e − iω + κ

iν − r+
e

− r−
e − iω + κ

iν − r−
e

]]]
(22)

wherer±
e are defined via (10). The time-average rate of absorption obtained in (22) clearly

indicates resonances at two complex frequenciesr±
e with the probe field at frequencyν.

Carmichaelet al [24] have used master equations to study the emission spectra of an atom in a
lossy cavity. In the present section, we have confined our attention to the absorption spectra of
the semiconductor QD. Agarwal and Puri [25] obtained a doublet structure in both the emission
and absorption spectra for an atom coupled to the cavity. Eberly and Wodkiewicz [31] drew
the inference that the doublet structure in the spontaneous emission could be observed only
when the atom is in resonance with the cavity mode. For a given energy state, the present
formulation can be easily reduced to that of an atom in a cavity. The doublet structure of
the absorption spectrum as obtainable from (22) would demonstrate two peaks separated by
1e/2+ge. The incorporation of the expression ofr±

e as given by (10) makes (22) cumbersome
for analytical investigations. Therefore, we have simplified (10) for the special cases of the
strong- and weak-coupling limits under resonant situations such that1e ' 0. However, the
numerical estimates have been made by incorporating (10) and taking into account the special
conditions, namely1e � 0 and1e � 0.
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4.1. The strong-coupling limit

The dynamics of the absorption spectrum in the SCL may be understood by recalling the
expressions forr±

e at1e ' 0 as

r±
e = i

(
ω +

1e

2
± ge

)
− κ + 0

2
. (23)

It is transparently obvious from (22) that the absorption spectrum will show a doublet structure
and the two resonant peaks will occur atν = ω + 1e/2 ± ge, the separation between the
two peaks being 2ge. Also, the width of each peak is totally controlled by the relaxation
parametersκ, γ andγc. All of the relaxation constants incorporated in the basic equation of
motion contribute to the additive nature of the spectral width in the absorption spectrum. For
larger values of relaxation parameters in the SCL, one can expect the doublet structure to merge
to a singlet structure, showing that the resolution of the two lines depends upon the damping
constants. The rate of absorption has been numerically calculated for the CdS and GaAs QDs
using the same parameters as were chosen for obtaining figures 2 and 3. The probe frequency
dependence of the time rate of absorption has been plotted in figures 5(a) and 5(b) for CdS
and GaAs quantum dots, respectively. The dotted and solid curves represent a single QD and
an atom. The figure depicts symmetric curves for positive and negative probe detuning. The
absorption spectrum obtained for the atomic system shows a single doublet structure, while the
spectrum obtained for a QD exhibits discrete doublet lines characteristic of different excitonic
states. Thompsonet al [32] have experimentally observed the normal-mode splitting from an
atom–cavity system. A solid-state analogue of such an effect has been reported by Weisbuch
et al [4] where the cavity field was in resonance with the excitonic levels of the quantum
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Figure 5. The absorption spectrum as a function of the pump–probe detuning parameter in the
strong-coupling limit, for CdS and GaAs QDs.
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well. Strong exciton–photon coupling has also been reported by Houdreet al [5], where they
concluded that the splitting depends on the exciton oscillatory strength. They have compared
the experimental observations with the linear dispersion model. Jahnkeet al [33] performed
cw pump–probe measurements of the excitonic normal-mode coupling in a microcavity. The
results have been obtained for the strong-coupling as well as the weak-coupling regime of
cavity-enhanced emission. The theoretical results obtained by us are qualitatively similar to
the ones reported in the above-mentioned observations [5,33].

In order to demonstrate the effect of inhomogeneous broadening arising due to the variation
of QD sizes in an array of quantum dots, we have incorporated a Gaussian size distribution
through the definition

Wav =
∫ aB

0
WF(R) dR.

The rate of absorption has been plotted as a function of the detuning parameter in figures 6(a)
and 6(b) for the QDs of CdS and GaAs, respectively. The solid curves are obtained for single
quantum dots, of finite sizes 19 Å and 56 Å, while the dashed curves are obtained for an IQD
of average radius distribution having 20% width.
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Figure 6. The dependence of the absorption spectrum on the pump–probe detuning in the strong-
coupling limit, for CdS and GaAs crystals.

4.2. The weak-coupling limit

In the weak-coupling limit and near-resonance situation (1e ' 0), equation (10) reduces to

r+
e = i(ω + 1e) − 0 and r−

e = iω − κ. (24)
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The use of (24) in (22) yields the time-average rate of absorption as

W = 2ν
∑

e

[ |µe0E
′|

h̄

]2 [
0

(ν − ω − 1e)2 + 02

]
. (25)

Equation (25) clearly indicates a single resonant peak atω + 1e = ν. Also, the absorption
spectrum will be a Lorentzian having a width of0. Hence, splitting of the absorption spectrum
will not be expected in the weak-coupling limit where the cavity and system losses dominate
over the semiconductor–microcavity coupling parameterge. The linewidth of the spectrum
in the present case will be completely decided by the system relaxation parametersγ andγc.
The variation ofW as a function of the detuning parameter (ω− ν) has been plotted in figure 7
for realistic cases of CdS and GaAs QDs in the microcavity. Again, for a specific value of
e = 1 the two-level system is represented and one obtains the single peak exhibited by the solid
curve. The amplitude of the peak increases for a SQD of finite size as shown by the dashed
curve, and further increase in the peak value can be seen for an IQD via the dotted curve.
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Figure 7. The variation of the absorption spectrum with probe detuning in the weak-coupling limit,
for CdS and GaAs quantum dots.

5. Conclusions

In conclusion, we have developed a theoretical model for studying the cavity photon–quantum
dot coupling by taking into account the different excitonic levels. The sample calculations
are made for quantum dots of CdS and GaAs in both strong- and weak-coupling limits.
The temporal behaviours demonstrated forρ0e are found to be similar to the observations
of time-resolved measurements for QDs [10, 30]. In the strong-coupling regime, the solid-
state analogue of vacuum Rabi splitting is observed. In the weak-coupling regime, the doublet
structure disappears.
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